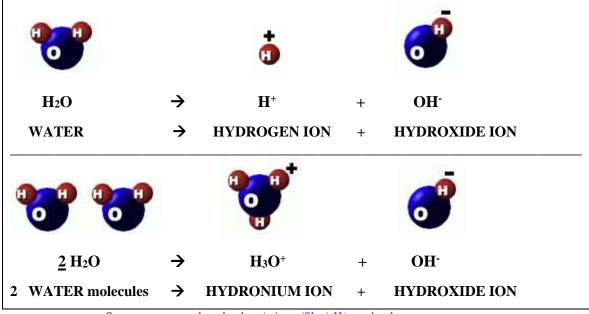
Ch. 17 Notes: ACIDS & BASES

NOTE: Vocabulary terms are in **boldface and underlined**. Supporting details are in *italics*.


- I. Properties and Examples of Acids and Bases
 - A. <u>Acids</u> produce hydrogen ions (H⁺) when dissolved in water
 ... more accurately, they produce <u>hydronium ions = H₃O⁺</u>
 1) properties: tart, sour, form electrolytic solutions of ions

- 2) examples: citric acid, vinegar, hydrochloric acid, sulfuric acid
- 3) usually have H in front of the formula or COOH at the end: HCl, CH₃COOH
- 4) turns litmus paper red
- 5) pH less than 7

B. **Bases** produce hydroxide ions (OH) when dissolved in water

- 1) properties: bitter, slippery, form electrolytic solutions of ions
- 2) examples: lye/soap, ammonia, sodium hydroxide, other metal hydroxides
- 3) usually have OH at the end of the formula: KOH, NaOH, Ca(OH)₂
 - ammonia (NH₃) is a base, even though for formula doesn't look like one—it forms NH₄OH in water
- 4) turns litmus paper blue
- 5) pH greater than 7
- C. self-ionization of water:

Source: www.worsleyschool.net/science/files/pH/page.html

- II. Models of Acid-Base Behavior
 - A. Arrhenius model (Svante Arrhenius, 1859-1927)
 - 1) Arrhenius acids
 - a) produce hydrogen ions (H^+) when dissolved in water
 - b) acidic hydrogen—hydrogen atoms that will be given up by acids as hydrogen ions

```
HA (aq) \rightarrow H^{+} (aq) + A^{-} (aq)
```

2) Arrhenius bases—bases that produce hydroxide ions when dissolved in water

BOH (aq) 🗲	$B^{+}(aq) +$	$OH^{-}(aq)$
------------	---------------	--------------

B. Brönsted-Lowry model (details – Chem 1H) (Johannes Brönsted, 1879-1947) and (Thomas Lowry, 1843-1909)

- 1) acid—hydrogen ion donor
- 2) base—hydrogen-ion acceptor
- 3) conjugate base—what the acid becomes after it donating hydrogen ion
- 4) conjugate acid what the base becomes after accepting hydrogen ion
- 5) water can function as an acid or a base
- 6) examples

EXAMPLE 1)

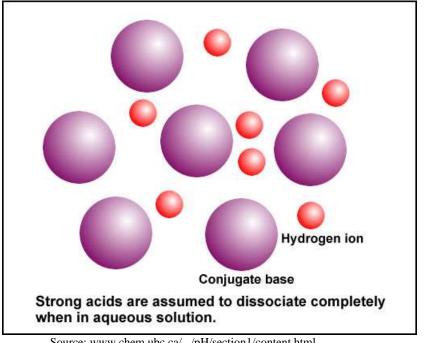
	HF (aq)	+ H ₂ O (l) →	$H_{3}O^{+}(aq) +$	F ⁻ (aq)
	acid	base	conjugate acid	conjugate base
EXAMPLE	E 2)			

 $NH_3 (aq) + H_2O (l) \rightarrow NH_4^+ (aq) + OH^- (aq)$ base acid conjugate acid conjugate base

- C. "-protic" model
 - 1) <u>monoprotic acids</u> donate 1 H⁺ to the solution (HCl, HNO₃) HCl (aq) \rightarrow H⁺ (aq) + Cl⁻ (aq) HNO₃ (aq) \rightarrow H⁺ (aq) + (NO₃)⁻ (aq)

$$HC_2H_3O_2(aq) \rightarrow H^+(aq) + (C_2H_3O_2)^-(aq)$$

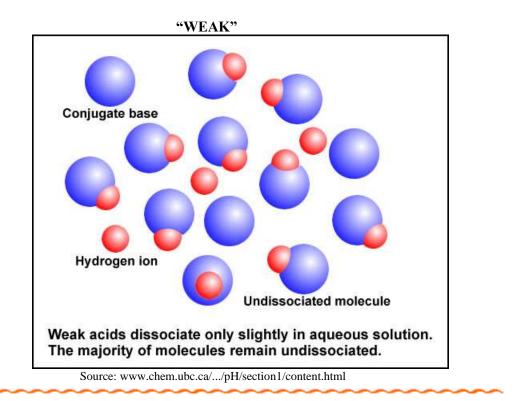
2) <u>diprotic acids</u> donate 2 H⁺ to the solution (H₂S, H₂SO₄) H₂S(aq) \rightarrow 2 H⁺ (aq) + S² (aq)


$$\begin{array}{ccc} H_2S(aq) & & \neq 2 \\ H_2SO_4(aq) & \rightarrow 2 \\ H^+(aq) + (SO_4)^{2-}(aq) \end{array}$$

- 3) <u>triprotic acids</u> donate 3 H⁺ to the solution (H₃BO₃, H₃PO₄) H₃BO₃ (aq) $\rightarrow \underline{3}$ H⁺ (aq) + (BO₃)³⁻ (aq) H₃PO₄ (aq) $\rightarrow 3$ H⁺ (aq) + (PO₄)³⁻ (aq)
- 4) **polyprotic acids** donate more than 1 H^+ to the solution (di- or tri-protic)
- D. Lewis model (Gilbert Lewis, 1875-1946) (Chem 1H)
 - 1) *Lewis acid— electron-pair acceptor*
 - 2) Lewis base—electron pair donor
- E. Anhydrides (Chem 1H)
 - 1) <u>acidic anhydrides</u>—nonmetal oxides which react with water to form acids $CO_2 + H_2O \rightarrow H_2CO_3$
 - $SO_3 + H_2O \rightarrow H_2SO_4$
 - 2) <u>basic anhydrides</u>—metal oxides which react with water to form bases
 - $Na_2O + H_2O \rightarrow \underline{2} NaOH$
 - $ZnO + H_2O \rightarrow Zn(OH)_2$

- III. Strengths of Acids and Bases
 - A. acid strength (see diagrams below and on the next page)
 - 1) strong acids
 - a) completely dissociate into ions
 - b) common examples: HCl, HNO₃, H₂SO₄
 - 2) weak acids partially dissociate (not all come apart) into ions
 - B. base strength
 - 1) <u>strong bases</u>—completely dissociate (come apart) into ions
 - 2) weak bases partially dissociate (not all come apart) into ions
 - C. strength vs. concentration
 - 1) weak and strong refer to dissociation only
 - 2) concentrated vs. dilute
 - a) amount of particles in the solution
 - b) **molarity**—(M); a measure of solution concentration in mol/L
 - 3) application

EXAMPLE 3)


SAMPLE 1: a 0.10 M so	olution of H ₂ SO ₄	SAMPLE 2:	a 1.00 M solution of HF
Which is more concentrated?	(SAMPLE 2, because	the molarity is	higher)
Which is the stronger acid?	(SAMPLE 1 because H	H ₂ SO ₄ is listed	as a strong acid and HF isn't)

"STRONG"

Source: www.chem.ubc.ca/.../pH/section1/content.html

.

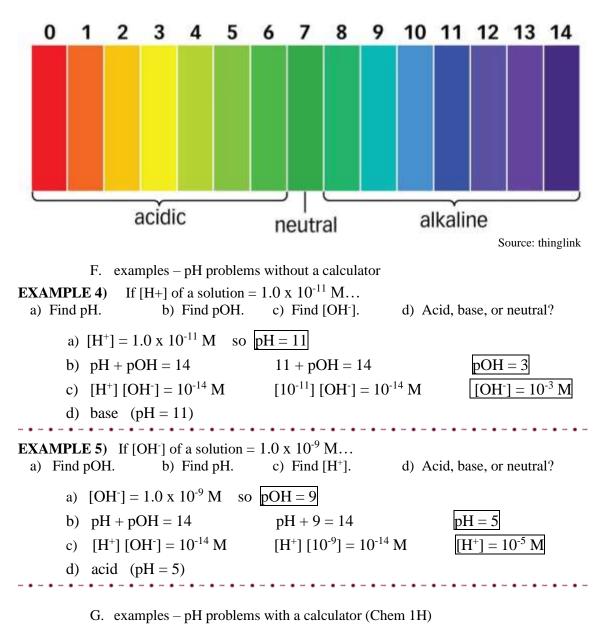
IV. pH (the power of Hydrogen)

A. neutrality of water

- 1) Water is mostly neutral $[H^+] = [OH^-]$ $[H^+] = 10^{-7} M$ and $[OH^-] = 10^{-7} M$
- 2) Ion product constant for water = K_w

$K_w = [H^+] [OH^-] = 10^{-14} M$

- 3) Acidic solutions: $[H^+] > [OH^-]$
- 4) Basic (alkaline) solutions: $[OH^-] > [H^+]$
- B. \mathbf{pH} = the negative logarithm of the hydrogen ion concentration


$\mathbf{pH} = -\log\left[\mathbf{H}^{+}\right]$

- C. pH is a measure of the acidity or basic quality (alkalinity) of a substance
- D. pH values
 - 1) acid pH < 7
 - 2) *base* pH > 7
 - 3) **<u>neutral</u>** pH = 7

<++++++		
0	7	14
strongest acid	neutral	strongest base

E. other important equations

pOH = - log [OH⁻] pH + pOH = 14.00

*** About antilog – some calculators have the 10^x key. You are responsible for knowing how to use your calculator and our classroom calculators. ***

 EXAMPLE 6) If [H+] of a solution = $4.98 \times 10^{-11} M...$

 a) Find pH.
 b) Find pOH.
 c) Find [OH⁻].
 d) Acid, base, or neutral?

 a) pH = $-\log [H^+]$ $-\log [4.98 \times 10^{-11}] =$ pH = 10.3

 b) pH + pOH = 14.00 10.3 + pOH = 14.00 pOH = 3.7

 c) pOH = $-\log[OH^-]$ antilog $-3.7 = [OH^-] = 0.00019952 = 2.0 \times 10^{-4} M = [OH^-]$

 d) base (pH = 10.3)

EXAMPLE 7) If pOH of a a) Find pH. b) F	a solution = 8.39 ind [H ⁺]. c) Find [OH ⁻].	d) Acid, base, or neutral?
a) pH + pOH = 14.00	pH + 8.39 = 14.00	pH = 5.61
b) $pH = -log [H^+]$ 5.61 = $-log[H^+]$	antilog $-5.61 = [H^+]$	$2.45 \text{ x } 10^{-6} \text{ M} = [\text{H}^+]$
c) $pOH = -log[OH^-]$ 8.39 = $-log[OH^-]$	antilog -8.39 = $[OH^-]$	$4.07 \text{ x } 10^{-9} \text{ M} = [\text{OH}^-]$
d) acid (pH = 5.61)		

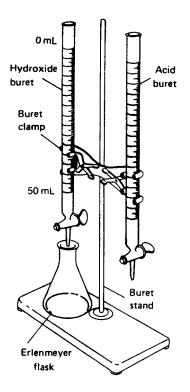
V. Neutralization reactions

ACID + BASE → WATER + SALT A. neutralization—when acid and base "cancel each other out" B. acid-base neutralization net ionic equation: $\mathbf{H}^+ + \mathbf{OH}^- \rightarrow \mathbf{H}_2\mathbf{O}$ C. common acids 1) hydrochloric acid = HCl 2) acetic acid = $HC_2H_3O_2$ or CH_3COOH 3) nitric acid = HNO_3 4) sulfuric acid = H_2SO_4 5) phosphoric acid = H_3PO_4 6) carbonic acid = H_2CO_3 D. acid naming rules for acids (Chem 1H): 1) naming binary acids, ending in -IDE: hydro-STEM-ic acid (HBr = hydrobromic acid)2) *naming oxyacids with an anion ending in –ATE:* STEM-ic acid $(HClO_3 = chloric acid)$ 3) *naming oxyacids with an anion ending in –ITE:* STEM-ous acid $(H_2SO_3 = sulfurous acid)$ NOTE: (STEM is the element name, other than H or O) E. classic double displacement reactions $AB + CD \rightarrow AD + CB$ 1) You will have to write and balance these double displacement reactions. 2) If the formula is not provided, you must "crisscross" to get it.

- 3) Remember, to get the products, you must "un-crisscross" and "re-crisscross" the reactant ions.
- 4) If you have trouble balancing, keep water as H(OH) to make it easier.
- 5) Practice naming the salt that is formed.

EXAMPLE 8)

hydrochloric acid	+	strontium hydroxide	\rightarrow	+
H ⁺ Cl ⁻		$\mathrm{Sr}^{2+}(\mathrm{OH})^{-}$		$\mathrm{H}^{+}\left(\mathrm{OH}\right)^{-}$ $\mathrm{Sr}^{2+}\mathrm{Cl}^{-}$
A B	+	C D	\rightarrow	A D + C B
Acid	+	Base	\rightarrow	Water + Salt
<u>2</u> HCl	+	Sr(OH) ₂	\rightarrow	$\underline{2}$ H ₂ O + SrCl ₂
				salt = strontium chloride


EXAMPLE 9)

phosphoric acid	+	magnesium hydroxide	\rightarrow	+	
$H^+ (PO_4)^{3-}$		Mg^{2+} (OH) ⁻		$\mathrm{H}^{+}\left(\mathrm{OH}\right)^{-}$	$Mg^{2+}(PO_4)^{3-}$
A B	+	C D	\rightarrow	A D +	СВ
H ₃ PO ₄	+	Mg(OH) ₂	\rightarrow	H_2O +	$Mg_3(PO_4)_2$
<u>2</u> H ₃ PO ₄	+	<u>3 Mg(OH)</u> 2	\rightarrow	$\underline{6}H_2O \ +$	0
				salt = mag	gnesium phosphate

VI. Titration

- A. <u>titration</u>—adding a specific amount of a solution of known concentration to a solution of unknown concentration, to calculate the molarity (M) of the unknown solution
- B. (titrant) -standard solution-the solution of known concentration
- C. <u>equivalence point</u> of the titration: when $(mol H^+) = (mol OH^-)$
- D. <u>end point</u> = the point in the titration when the indicator changes color
- E. indicator
 - a) a dye which is a different color in an acid vs. a base
 - b) bromothymol blue = yellow in acid, blue in base
 - c) phenolphthalein (PHTH) = clear in acid, "funky fuchsia" in base
 - d) other indicator dyes: methyl red, crystal violet, Orange IV...
- F. $M_A V_A = M_B V_B$ (M = molarity, V = volume)

TITRATION LAB SETUP

VII. Salt hydrolysis (Chem 1H)

- A. Not all salt solutions are neutral!
- B. neutral (normal) salts... H⁺ ions are completely replaced in the rxn.
- C. <u>salt hydrolysis</u>—when salts produce acidic or basic solutions in water
- D. salts produce acidic solutions when the cations from the base will donate H^+ to the solution
- E. salts producing basic solutions when the anions from the acid will accept H^+ ions from the solution

Acid	Base	Salt	Example
Strong	Strong	Neutral	NaOH + HCI → NaCI + H ₂ O
Strong	Weak	Acidic	HCI + NH₄OH →NH₄CI + H₂O
Weak	Strong	Basic	CH₃COOH + NaOH → CH₃COONa + H₂O
Weak	Weak	Neutral	$CH_3COOH + NH_4OH \rightarrow CH_3COONH_4 + H_2O$

Source: ncerthelp

VIII. Buffered solutions

A. **Buffers**

- 1) solutions resistant to pH changes when small amounts of acid or base are added
- 2) a mixture of a weak acid and its conjugate base OR a weak base and its conjugate acid
- 3) works best with nearly equal concentrations of the acid or base and its conjugate base or acid
- B. buffers work according to LeChatlier's principle
- C. <u>buffering capacity</u>—the amount of acid or base that a solution can absorb without a significant change in pH